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The Virtual Brain Integrates Computational Modeling
and Multimodal Neuroimaging

Petra Ritter,1–4 Michael Schirner,2,3 Anthony R. McIntosh,5 and Viktor K. Jirsa6

Abstract

Brain function is thought to emerge from the interactions among neuronal populations. Apart from traditional
efforts to reproduce brain dynamics from the micro- to macroscopic scales, complementary approaches
develop phenomenological models of lower complexity. Such macroscopic models typically generate only a
few selected—ideally functionally relevant—aspects of the brain dynamics. Importantly, they often allow an un-
derstanding of the underlying mechanisms beyond computational reproduction. Adding detail to these models
will widen their ability to reproduce a broader range of dynamic features of the brain. For instance, such models
allow for the exploration of consequences of focal and distributed pathological changes in the system, enabling us
to identify and develop approaches to counteract those unfavorable processes. Toward this end, The Virtual Brain
(TVB) (www.thevirtualbrain.org), a neuroinformatics platform with a brain simulator that incorporates a range of
neuronal models and dynamics at its core, has been developed. This integrated framework allows the model-
based simulation, analysis, and inference of neurophysiological mechanisms over several brain scales that under-
lie the generation of macroscopic neuroimaging signals. In this article, we describe how TVB works, and we pres-
ent the first proof of concept.
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Introduction

Cognition is thought to emerge through integrated ac-
tivity of neuronal populations throughout the brain, fol-

lowing the principles of segregation and integration. Ongoing
reconfigurations of distantly interacting local neuronal sub-
sets or modules yield the continuous flow of perceptual, cogni-
tive, and behavioral functions. Observation of signals emitted
by neurons and neuronal populations is a common approach
in neuroscience to obtain insight into the brain function.
While details about the physiological behavior at microscopic
levels are important for understanding neuronal computation,
it is at the whole-brain scale or large scale where the actual in-
tegration occurs and cognition emerges. Noninvasive neuroi-
maging methods such as electroencephalography (EEG),
magnetoencephalography (MEG), functional magnetic reso-
nance imaging (fMRI), and positron-emission tomography
provide a global macroscopic picture of neuronal dynamics.
Macroscopic signal features emerge from the interaction of

neuronal populations at local and global scales. Their explicit
link to function—the neural code—still remains unclear.
Instead of trying to understand neuronal interactions in
every detail, a reasonable first step is to model functionally rel-
evant dynamics at coarser levels.

In this article, we describe a newly developed neuro-
informatics platform—The Virtual Brain (TVB; www
.thevirtualbrain.org)—and we provide the proof of concept
for our proposed approach. The platform integrates the
large-scale structure of brain connectivity spanning salient
brain regions, each being equipped with a regional neuronal
model that is able to capture relevant features of brain activity
at the mesoscopic scale, that is, the scale of cortical columns,
nuclei, and populations comprising up to several hundreds of
neurons. Thus, the regional dynamics can be evaluated in the
context of long-range interactions, enabling the principles of
segregation and integration to be modeled explicitly.

Model-based multimodal data integration approaches
have many advantages over conventional approaches such
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as direct data fusion or converging evidence (Horwitz and
Poeppel, 2002; Valdes-Sosa et al., 2009). Direct data fusion
aims for the direct comparison of data sets from different im-
aging modalities using mathematical or statistical assessment
criteria. However, these approaches often rest on the assump-
tion of identical neuronal signal generators or that signals
from different modalities have compatible features. The
signals of the spatiotemporal source activity patterns do not
necessarily need to overlap in different modalities nor do
high statistical correlations between activation levels need
to point to the true site of the signal source (Schulz et al.,
2004). Model-based approaches, on the other hand, are able
to integrate information from different modalities in a com-
plementary manner, while avoiding limitations arising from
pure statistical comparisons that do not incorporate structural
and dynamical knowledge about the distinct underlying neu-
rophysiological sources that generate the respective signals.
Thus, in our view, the most reasonable way to integrate mul-
timodal neuroimaging data together with existing knowledge
about brain functioning and physiology is by means of a com-
putational model that describes the emergence of high-level
phenomena on the basis of basic bottom-up interaction be-
tween the elementary brain-processing units.

Large-scale neural network models can be built to incorpo-
rate prior knowledge about brain physiology and can be com-
bined with forward models that allow the simulation of
neuroimaging modalities (e.g., fMRI and EEG). This ap-
proach promotes the direct formulation and evaluation of
hypotheses on how cognitive processes are generated by neu-
ronal interaction. This can take the form of specific features of
the model network structure, that is, interaction strength and
delay between neural elements, or biophysical properties
such as resting potentials, membrane permeability, plasticity
effects, and so on. The data generated by these models can be
directly compared to the signals from the respective imaging
modality, and model parameters can be adjusted to the ob-
served data. In an iterative manner, the fit between model
output and empirical data is evaluated and used to improve
the unobservable model components such as parameter set-
tings or the model structure itself. The careful selection of
local mesoscopic models and the iterative refinement of
model network structure and parameter optimization
lead to systematic improvements in model validity and
thereby in knowledge about brain physiology and mecha-
nisms underlying cognitive processing. Cognitive and behav-
ioral experiments can then be interpreted in the light of
model behavior that directly points to the underlying neuro-
nal processes. For example, analyzing the variation of param-
eter settings in response to experimental conditions can
deliver insights on the role of the associated structural or dy-
namical aspects in a certain cognitive function. Further, the
relevance of neurobiological features for the emergence of
self-organized criticality and neuronal information process-
ing can be tested.

In summary, the model-based nexus of experimental and
theoretical evidence allows the systematic inference of deter-
minants of the generation of neuronal dynamics. Model-
based integration of different neuroimaging modalities
enables the exploration of consequences of biophysically rel-
evant parameter changes in the system as they occur in
changing brain states or during pathology. Hence, TVB
helps us to uncover (1) the fundamental neuronal mecha-

nisms that give rise to typical features of brain dynamics
and (2) how intersubject variability in the brain structure re-
sults in differential brain dynamics.

The purpose of this article was to describe the main con-
cept and to provide the proof of principle based on empirical
data and example simulations. The article is structured as
follows:

In the first section Modeling Large-Scale Brain Dynamics,
we describe the principles governing the construction of
large-scale brain models in TVB. This includes a description
of the neuronal source model and the forward models used
to translate the signals from individual sources into brain im-
aging signals. We describe the local mesoscopic models repre-
senting the local dynamics of the brain regions as well as the
anatomical connectivity constraints coming from tract length,
capacity, and directionality. Finally, we describe how the
mean field activity is translated into signals that are compara-
ble to the brain-imaging methods such as EEG and fMRI.

Next, in the section Identification of Spatiotemporal Motifs,
we describe the proposed steps for the integration of func-
tional empirical and simulated data. This includes deriving
spatial register between data sets and reducing the parameter
space to minimize the computation time. We detail our
employed parameter estimation algorithm and discuss the
possibilities provided by Building a dictionary of dynamical
regimes, which lists the collection of parameter settings that
produce different large-scale dynamics.

Finally, in the section Benefits of TVB Platform, we discuss
examples how TVB can be used to obtain insights into brain
function that could not be obtained by either empirical or the-
oretical approaches alone and help formulating new testable
hypotheses.

Modeling Large-Scale Brain Dynamics

A choice of local mesoscopic dynamics

The brain contains *1011 neurons linked by *1015 connec-
tions, with each neuron having inputs in the order of 105.
The complex and highly nonlinear neuronal interaction pat-
terns are only poorly understood, and the number of degrees
of freedom of a microscopic model attempting to describe
every neuron, every connection, and every interaction is as-
tronomically large and therefore far too high for fitting it di-
rectly with the recorded macroscopic data. The gap between
the microscopic sources of scalp potentials at the cell mem-
branes and the recorded macroscopic potentials can be
bridged by an intermediate mesoscopic description (Nunez
and Silberstein, 2000). Mesoscopic dynamics describe the ac-
tivity of populations of neurons organized as cortical col-
umns or subcortical nuclei. Several features of mesoscopic
and macroscopic electric behavior, for example, dynamic pat-
terns such as synchrony of oscillations or evoked potentials,
show good correspondence to certain cognitive functions,
for example, resting-state activity, sleep patterns, or event-re-
lated activity.

Common assumptions in the neural mass or mean-field
modeling are that explicit structural features or temporal de-
tails of neuronal networks (e.g., spiking dynamics of single
neurons) are irrelevant for the analysis of complex meso-
scopic dynamics, and the emergent collective behavior is
only weakly sensitive to the details of individual neuron be-
havior (Breakspear and Jirsa, 2007). Basic mean field models
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capture changes of the mean firing rate (Brunel and Wang,
2003), whereas more sophisticated mean field models account
for parameter dispersion in the neurons and the subsequent
richer behavioral repertoire of the mean field dynamics
(Assisi et al., 2005; Jirsa and Stefanescu, 2011; Stefanescu
and Jirsa, 2008, 2011). These approaches demonstrate a rela-
tively new concept from statistical physics that macroscopic
physical systems obey laws that are independent of the de-
tails of the microscopic constituents they are built of
(Haken, 1975). These and related ideas have been exploited
in neurosciences (Buzsaki, 2006; Kelso, 1995). Thus, our
main interest lies in deriving the mesoscopic laws that drive
the observed dynamical processes at the macroscopic scale
in a systematic manner.

In the framework of TVB, we incorporate biologically real-
istic large-scale coupling of neural populations at salient brain
regions that is mediated by long-range neural fiber tracts as
identified with diffusion tensor imaging (DTI)-based tractog-
raphy together with mean-field models as local node models.
Various mean-field models are available in TVB, reproducing
typical features of the mesoscopic population dynamics. For
the simulations in present work, we use the Stefanescu–Jirsa
model (2008) that is based on mean-field dynamics of a
heterogeneous network of Hindmarsh–Rose neurons capable
of displaying various spiking and bursting behaviors.

The Stefanescu–Jirsa neural population model provides a
low-dimensional description of complex neural population
dynamics, including synchronization and random firings of
neurons, multiclustered behaviors, bursting, and oscillator
death. The conditions under which these behaviors occur
are shaped by specific parameter settings, including, for ex-
ample, connectivity strengths and neuronal membrane excit-
ability. A characteristic feature of the Stefanescu–Jirsa model
is that it takes into account the parameter dispersion (i.e., non-
identical neurons in the population), giving rise to a rich rep-
ertoire of behaviors.

A neural population model f (xi(t)) = _xi(t) describes the
local dynamics at each of the nodes i of the large-scale
network. The six coupled first-order differential equations
of the Stefanescu–Jirsa model are a reduced representation
of the mean-field dynamics of populations of fully connected
neurons that are clustered into excitatory and inhibitory pools
(see Fig. 1A).

Since the reduced system is composed of three components
or modes, each variable and parameter is either a column vec-
tor with three rows or a 3 · 3 square matrix:

_xi = yi� ax3
i þ bx2

i � ziþ [K11(X1� xi)�K12(X2� xi)]þ IEi

_yi = ci� dx2
i � yi

_zi = rsxi� rzi�mi

_wi = vi� aw3
i þ bw2

i � uiþK21(X1�wi)þ IIi

_vi = hi� piw
2
i � vi

_ui = rswi� rui� ni (1)

This dynamical system describes the state evolution of two
coupled populations of excitatory (variables x, y, and z) and
inhibitory neurons (variables w, v, and u). In its original
single-neuron formulation—that is known for its good repro-
duction of burst and spike activity and other empirically
observed patterns—the variable x(t) encodes the neuron
membrane potential at time t, while y(t) and z(t) account for

the transport of ions across the membrane through ion chan-
nels. The spiking variable y(t) accounts for the flux of sodium
and potassium through fast channels, while z(t), called burst-
ing variable, accounts for the inward current through slow-
ion channels (Hindmarsh and Rose, 1984). Even if it is not
justified to directly expand this interpretation of variables
and parameters from the single-neuron formulation to an anal-
ogous comprehension of their mean-field counterparts, the
mean-field terms are nevertheless related to some of the under-
lying biophysical properties of the system [see Stefanescu and
Jirsa (2008)]. Several biophysical parameters are permanently
subject to ongoing fluctuations that are directly related to qual-
itative changes in the dynamics of the network. It is noteworthy
that the mathematical structure of the single-neuron model is
reflected in the mathematical structure of the population
model. The population parameters comprise the contributions
of the couplings and the distribution of the parameters.

Each of the three modes of the Stefanescu–Jirsa model
(Eq. 1) reflects distinct dynamical behaviors depending on
the range of membrane excitabilities of the neuron cluster
(Stefanescu and Jirsa, 2008).

Full-brain model: coupling mesoscopic models
with individual connectivity features

When traversing the scale to the large-scale network, pop-
ulation dynamics described by Equation 1 are connected
using DTI tractography-derived coupling parameters. Each
node of the large-scale network is now governed by its own
intrinsic dynamics generated by the six equations and the dy-
namics of the coupled nodes that is summed to the local
mean-field potential xi. This yields the following evolution
equation for the time course t = 1, . . . , T of the network
mean-field potential {xi(t)} at node i:

xi(tþ 1) = xi(t)þ f (xi(t))dtþ c +
N

j = 1

wijxj(t�Dtij) dtþ g(t): (2)

The equation describes the numerical integration of a net-
work of N connected neural populations i = 1;/, N. The
large-scale network is described by connection weights wij,
where index j indicates the weight of node j exerting an influ-
ence on the node indexed by i. Connection weights are de-
rived from fiber-tract sizes. The time delays for information
transmission Dtij = dij=� depend on a distance matrix dij and
a constant conduction speed m. Weights are scaled by a con-
stant c. Additive noise is introduced by the term g(t). The cou-
pling of the large-scale network is constrained by individual
DTI-based tractography data combined with directionality
data from the CoCoMac database [http://cocomac.org (Bezgin
et al., 2011); see examples of structural connectivity (SC)
matrices of 96 regions reflecting fiber tract lengths, fiber tract
sizes and directionality of the neuronal pathways in Figure
2A. Anatomical names of the 96 regions as listed in Table 1].

The brain connectivity of TVB distinguishes region-based
and surface-based connectivity. In the former case, the net-
works comprise discrete nodes and connectivity, in which
each node models the neural population activity of a brain re-
gion, and the connectivity is composed of inter-regional fi-
bers. Region-based networks contain typically 30–200
network nodes. In the latter case, the cortical and subcortical
areas are modeled on a finer scale by 5000–150,000 points, in
which each point represents a neural population model. This
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approach allows a detailed spatial sampling, in particular, of
the cortical surface, resulting in a spatially continuous approx-
imation of the neural activity known as neural field modeling
(Amari, 1977; Jirsa and Haken, 1996; Nunez, 1974; Robinson,
1997; Wilson-Cowan, 1972). Here, the connectivity is com-
posed of local intracortical and global intercortical fibers.

An example of the mean-field potential of two different
brain areas as generated by the Stefanescu-Jirsa model is
given in Figure 3A. As visible in the power spectral densities
(PSD) next to the traces the upper mean-field potential has a
spectral peak in the alpha band, while the lower one is domi-
nated by delta activity. Figure 3B shows 15 seconds of simu-
lated EEG activity for a selection of six channels. In Figure 3C
a comparison of simulated and empirical BOLD activity
(average over region-voxels) for low and high functional con-
nectivity is shown. Figure 3D compares PSD of simulated
mean-field source, EEG and BOLD activity.

Forward model

Upon simulating brain activity in the simulator core of
TVB, the generated neural source activity time courses from
both region- and surface-based approaches are projected
into EEG, MEG, and blood oxygen level-dependent (BOLD)
contrast space using a forward model (Bojak et al., 2010).
The first neuroinformatic integration of these elements has
been performed by Jirsa and colleagues (2002) demonstrating
neural field modeling in an event-related paradigm. Homo-
geneous connectivity along the lines of Jirsa and Haken
(1996) was implemented. Neural field activity was simulated
on a spherical surface for computational efficiency and then
mapped upon the convoluted cortical surface with its gyri
and sulci. The forward solutions of EEG and MEG signals
showed that a surprisingly rich complexity is observable in
the EEG and MEG space, despite simplicity in the neural
field dynamics. In particular, neural field models (Amari,
1978; Jirsa and Haken, 1996; Nunez, 1974 Robinson, 1997; Wil-
son-Cowan, 1974) have a spatial symmetry in their connectiv-
ity, which is always reflected in the symmetry of the resulting
neural source activations, even though it may be significantly
less apparent (if at all) in the EEG and MEG space. This led to
the conclusion that the integration of tractographic data is im-
perative for future large-scale brain modeling attempts ( Jirsa
et al., 2002), since the symmetry of the connectivity will con-
strain the solutions of the neural sources.

Computing EEG/MEG signals. The forward problem of
the EEG and MEG is the calculation of the electric potential
V(x) on the skull and the magnetic field B(x) outside the
head from a given primary current distribution D(x,t) as

described by Jirsa and colleagues (2002) which we summarize
in the following. The sources of the electric and magnetic fields
are both primary and return currents. The situation is compli-
cated by the fact that the present conductivities such as the
brain tissue and the skull differ by the order of 100. Three-com-
partment volume conductor models are constructed from
structural MRI data; the surfaces for the interfaces between
the gray matter, cerebrospinal fluid, and white matter are ap-
proximated with triangular meshes (see Fig. 4). For EEG pre-
dictions, volume conduction models for the skull and scalp
surfaces are incorporated. Here it is assumed that the electric
source activity can be well approximated by the fluctuation
of equivalent current dipoles generated by excitatory neurons
that have dendritic trees oriented roughly perpendicular to the
cortical surface and that constitute the majority of neuronal
cells (*85% of all neurons). We neglect dipole contributions
from inhibitory neurons, since they are only present in a low
number (*15%), and their dendrites fan out spherically.
Therefore, dipole strength can be assumed to be roughly pro-
portional to the average membrane potential of the excitatory
population (Bojak et al., 2010).

Dipole locations are assumed to be identical to source loca-
tions used for DTI tractography, while orientations are in-
ferred as the normal of the triangulations of the segmented
anatomical MR images (Fig. 4). Besides amplitude, every di-
pole has six additional degrees of freedom necessary for de-
scribing its position and orientation within the cortical
tissue. At this stage, we have a representation of the current
distribution in the three-dimensional physical space x 2 R3

and its evolution over time t given by the neural source mod-
eling. To make the proper comparison with experimental
data, the forward solutions of the scalar electric potential
V(x) on the skull surface and of the magnetic field vector
B(x) at the detector locations have to be calculated. Here it
is useful to divide the current density vector J(x) produced
by neural activity into two components. The volume or return
current density Jv(x) = r(x)E is passive and results from the
macroscopic electric fields E(x) acting on the charge carriers
in the conducting medium with the macroscopic conductivity
r(x). The primary current density is the site of the sources of
brain activity and is approximately identical to the neural
field activity, because although the conversion of chemical
gradients is due to diffusion, the primary currents are deter-
mined largely by the cellular-level details of conductivity.
The current flow is perpendicular to the cortical surface due
to the perpendicular alignment and elongated shape of pyra-
midal neurons as discussed above. In the quasistatic approx-
imation of the Maxwell equations, the electric field becomes
E = � 5V, where 5 is the Nabla operator ( . . . q=qx . . . )T .

FIG. 1. (A) Schematic of the local source node network architecture underlying mean field modeling. Excitatory (red circles)
and inhibitory (black squares) neurons occupy a volume (left). Couplings are indicated by black connecting lines. Conceptu-
ally, both neuron types can be clustered in two subpopulations (middle). Each subpopulation can be then characterized by a
mean behavior under certain conditions (right) and a mean connectivity (K11, K21, and K12) [Figure courtesy: Stefanescu
and Jirsa (2008)]. (B) Effects of changing the coupling strength parameter K11. Left: mainly, the excitatory coupling strength
(n = 0.5) leads to synchronization between neurons in the excitatory (red) and inhibitory subpopulations (black). Right: mainly
inhibitory coupling: mainly, inhibitory coupling (n = 1.5) leads to small oscillations in the inhibitory subpopulation and chaotic
oscillations in the excitatory neurons [Figure courtesy: Stefanescu and Jirsa (2008)]. (C) Dynamical regimes of a dominantly
inhibitory neural population: contour map of the mean-field amplitude calculated for a fixed ratio n = 2.5 of inhibitory and ex-
citatory coupling. Simulation databases are generated by sweeping values of n, K21/K11, K12, and r and storing the resulting
waveforms [Figure courtesy: Stefanescu and Jirsa (2008)].
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The current density J is

J(x) = w(x, t)n(x)þ r(x)E(x) = w(x, t)n(x)� r(x)5 V(x) (3)

where n(x) is the cortical surface normal vector at location x.
Following the lines of Hamalainen et al. (1989, 1993) and

using the Ampere–Laplace law, the forward MEG solution
is obtained by the volume integral

B(x) =
lo

4p

Z
(w(x¢, t)n(x¢)þV(x¢)5¢r(x¢)) ·

x� x¢

jx� x¢j3
d�¢ (4)

where dm¢ is the volume element, 5¢ the Nabla operator with
respect to x¢, and lo the magnetic vacuum permeability.

The forward EEG solution is given by the boundary problem

5 � (r(x)5 V(x)) = 5 � (w(x, t)n(x)) (5)

which is to be solved numerically for an arbitrary head
shape, typically using boundary element techniques as pre-
sented by Hamalainen (1992) and Nunez and Srinivasan
(2006). In particular, these authors showed that for the com-
putation of neuromagnetic and neuroelectric fields arising
from cortical sources, it is sufficient to replace the skull by a
perfect insulator, and, therefore, to model the head as a
bounded brain-shaped homogeneous conductor. Three sur-
faces S1S2S3 have to be considered at the scalp–air, the
skull–scalp, and the skull–brain interface, respectively,
whereas the latter provides the major contribution to the
return currents. The three-dimensional geometry of these sur-
faces is obtained from MRI scans. There are various methods
to solve the boundary problem above [see for instance,
Hamalainen (1992) and Oostendorp et al. (2000)], but all of
them compute some form of a transfer matrix acting upon
the distributed neural sources and providing the forward
EEG at electrode locations. The boundary-element (BEM)
models are based on meshes that form a closed triangulation
of the compartment surfaces from segmented T1-weighed

MRI surfaces. Finite element method models consist of multi-
ple tetrahedra, allowing to model tissue anisotropy that is
physiologically more realistic at the cost of computational re-
sources.

In the current study, we used the software packages spm8
(www.fil.ion.ucl.ac.uk/spm/software/spm8/) and Fieldtrip
(http://fieldtrip.fcdonders.nl) to generate a transfer matrix
for EEG, a so-called lead-field matrix (LFM) to be used for
the forward modeling of EEG data (Litvak et al., 2011). In a
first step, we loaded the electrode positions of our 64-channel
MR-compatible EEG cap (Easy Cap) from a standard file con-
taining 97 positions of the International 10–20 system, subse-
quently deleting the positions not represented by our cap,
resulting in 61 remaining positions (the remaining three chan-
nels were used for recording of electrocardiography required
to correct the heartbeat-related artifacts in the EEG caused by
the static field B0 field of the MR scanner and for Electroocu-
lography). Three fiducial points (Nasion, left- and right pre-
auricular points) were used for alignment of the sensor
positions to the head model. Next, we selected the canonical
mesh/triangulation of the Montreal Neurological Institute
(MNI) head model (SPM8) consisting of 20,484 vertices and
40,960 faces. Alternatively, one can calculate individual
meshes using Fieldtrip with the option to choose the desired
degree of detail. Distances between electrodes and scalp sur-
face are minimized manually. Subsequently, the actual for-
ward model is computed. For this, first, we defined all
vertices of the cortex as sources (dipoles) and setting their ori-
entation to normal, that is, choosing the vertex normal of each
vertex point—pointing out of the cortex (Fig. 4). The normals
are calculated by Fieldtrip’s built-in function normals(). After
that, the LFM is computed by using the Fieldtrip function
ft_prepare_lead field(), providing a 61 · 20,484 matrix,
describing the projection of each source (vertex) onto the
electrodes.

FIG. 2. (A) Exemplary connectivity strength and distance matrices of a single subject obtained by diffusion tensor imaging
tractography and directionality matrix of the macaque obtained from the CoCoMac database. Shown are normalized capaci-
ties between different source nodes that resemble the weight of individual node interactions estimated by the size of the fiber
tract connecting the nodes (left) and distances between nodes (middle) estimated by the fiber-tract length between source node
voxels. In addition, directionality information (black: explicit no connectivity) obtained from macaque axon-tract tracing data
of the CoCoMac database is shown (right). Area names of the 96 regions are listed in Table 1—ordering of regions is equal in
table and matrices. (B) Empirical and simulated functional connectivity (FC) of functional magnetic resonance imaging (fMRI)
data. By a coarse numerical parameter space search, we identified parameter settings that yielded functional blood oxygen
level-dependent (BOLD) connectivity that significantly correlated with the FC of empirical fMRI data (in the shown example,
a correlation of r = 0.47 has been achieved). The window length of the empirical BOLD data used to calculate FC was 38 scans =
73,72 sec (repetition time = 1.94 sec/sampling rate 0.5155 Hz). Altogether, the empirical BOLD data collected for a single subject
had the length of 666 scans. We slid the window for the calculation of the BOLD FC over the entire empirical time series in steps
of a single volume resulting in 666�38 = 628 different empirical FCs per subject. Simulated BOLD data were obtained by con-
volving a simulated mean field time series of the excitatory population (duration: 200 sec; sampled at 250 Hz) with the hemo-
dynamic response function. This signal was subsequently downsampling to the fMRI scan frequency, resulting in a timeseries
of 86 samples. Simulated FC was calculated over an identical time window of 38 scans as in empirical data. By sliding the win-
dow over the simulated time series in one-scan steps, we obtained 86�38 = 48 different simulated FCs. All simulated FCs were
compared to all empirical FCs by calculating correlation coefficients resulting in 628 · 48 = 30,144 r values per subject and pa-
rameter setting. In this initial coarse parameter space search, we tested 78 different parameter settings by varying the param-
eters GC, structural connectivity (SC), v_cond, K11, K21, K12, and the six noise terms (abbreviations explained in Table 2). See
examples for the distributions of resulting r-values in (C). The parameter values yielding the here-shown example of simulated
data are listed in Table 2. The area names of the 96 regions for which FC is shown can be found in Table 1 in the identical order
as depicted here. (C) Individual structure predicts function. BOLD FC matrices of nine subjects (represented by the different
panels) were correlated with simulated FC matrices based on SC of a single subject. Shown are the distributions of correlation
coefficients (CCs) for 30,144 comparisons (628 empirical FCs · 48 simulated FCs). The red-boxed panel contains the data where
SC and FC come from same subject—resulting in notably higher CCs.
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EEG signals can now be calculated by applying the result-
ing LFM to the mean field source activity generated by the
Stefanescu–Jirsa model (example shown in Fig. 3B). The cor-
responding frequency spectrum of the thus generated EEG
is shown in Figure 3D.

Computing fMRI BOLD signals. Subsequent to the fitting
of electric activity with the model, we want to compare model
predictions of BOLD contrast with actual recorded fMRI
timeseries data to deduce and integrate further constrains
from and into the model and to perform analyses on the cou-
pling between neural activity and BOLD contrast fluctuation.

Yet, the relation between neuronal activity and the BOLD
signal is far from being elucidated (Bojak et al., 2010). Some
major questions are not yet sufficiently answered, such as

Table 1. Area Names of the 96 Regions Represented

in the Model and Their Abbreviations

No. Area name Abbreviation

1 Temporal polar cortex RM-TCpol_R
2 Superior temporal cortex RM-TCs_R
3 Amygdale RM-Amyg_R
4 Orbitoinferior prefrontal cortex RM-PFCoi_R
5 Anterior insula RM-IA_R
6 Orbitomedial prefrontal cortex RM-PFCom_R
7 Central temporal cortex RM-TCc_R
8 Orbitolateral prefrontal cortex RM-PFCol_R
9 Inferior temporal cortex RM-TCi_R

10 Parahippocampal cortex RM-PHC_R
11 Gustatory cortex MM82a-G_R
12 Ventrolateral premotor cortex RM-PMCvl_R
13 Anterior visual area, ventral part RM-VACv_R
14 Posterior insula RM-Ip_R
15 Prefrontal polar cortex RM-PFCpol_R
16 Hippocampus RM-HC_R
17 Subgenual cingulate cortex RM-CCs_R
18 Ventrolateral prefrontal cortex RM-PFCvl_R
19 Visual area 2 (secondary

visual cortex)
RM-V2_R

20 Medial prefrontal cortex RM-PFCm_R
21 Ventral temporal cortex RM-TCv_R
22 Anterior visual area, dorsal part RM-VACd_R
23 Visual area 1 (primary visual cortex) RM-V1_R
24 Centrolateral prefrontal cortex RM-PFCcl_R
25 Secondary auditory cortex RM-A2_R
26 Retrosplenial cingulate cortex RM-CCr_R
27 Posterior cingulate cortex RM-CCp_R
28 Anterior cingulate cortex RM-CCa_R
29 Secondary somatosensory cortex RM-S2_R
30 Primary somatosensory cortex RM-S1_R
31 Primary auditory cortex RM-A1_R
32 Primary motor cortex RM-M1_R
33 Inferior parietal cortex RM-PCi_R
34 Medial parietal cortex RM-PCm_R
35 Dorsomedial prefrontal cortex RM-PFCdm_R
36 Intraparietal cortex RM-PCip_R
37 Superior parietal cortex RM-PCs_R
38 Frontal eye field RM-FEF_R
39 Dorsolateral prefrontal cortex RM-PFCdl_R
40 Medial premotor cortex RM-PMCm_R
41 Dorsolateral premotor cortex RM-PMCdl_R
42 Thalamic ROI with major

frontal connections
TM-F_R

43 Thalamic ROI with major
temporal connections

TM-T_R

44 Thalamic ROI with major
occipitoparietal connections

TM-OP_R

45 Caudate nucleus BG-Cd_R
46 Putamen BG-Pu_R
47 Pallidum BG-Pa_R
48 Accumbens nucleus BG-Acc_R
49 Temporal polar cortex RM-TCpol_L
50 Superior temporal cortex RM-TCs_L
51 Amygdala RM-Amyg_L
52 Orbitoinferior prefrontal cortex RM-PFCoi_L
53 Anterior insula RM-IA_L
54 Orbitomedial prefrontal cortex RM-PFCom_L
55 Central temporal cortex RM-TCc_L
56 Orbitolateral prefrontal cortex RM-PFCol_L
57 Inferior temporal cortex RM-TCi_L
58 Parahippocampal cortex RM-PHC_L

(continued)

Table 1. (Continued)

No. Area name Abbreviation

59 Gustatory cortex MM82a-G_L
60 Ventrolateral premotor cortex RM-PMCvl_L
61 Anterior visual area, ventral part RM-VACv_L
62 Posterior insula RM-Ip_L
63 Prefrontal polar cortex RM-PFCpol_L
64 Hippocampus RM-HC_L
65 Subgenual cingulate cortex RM-CCs_L
66 Ventrolateral prefrontal cortex RM-PFCvl_L
67 Visual area 2 (secondary

visual cortex)
RM-V2_L

68 Medial prefrontal cortex RM-PFCm_L
69 Ventral temporal cortex RM-TCv_L
70 Anterior visual area, dorsal part RM-VACd_L
71 Visual area 1 (primary visual cortex) RM-V1_L
72 Centrolateral prefrontal cortex RM-PFCcl_L
73 Secondary auditory cortex RM-A2_L
74 Retrosplenial cingulate cortex RM-CCr_L
75 Posterior cingulate cortex RM-CCp_L
76 Anterior cingulate cortex RM-CCa_L
77 Secondary somatosensory cortex RM-S2_L
78 Primary somatosensory cortex RM-S1_L
79 Primary auditory cortex RM-A1_L
80 Primary motor cortex RM-M1_L
81 Inferior parietal cortex RM-PCi_L
82 Medial parietal cortex RM-PCm_L
83 Dorsomedial prefrontal cortex RM-PFCdm_L
84 Intraparietal cortex RM-PCip_L
85 Superior parietal cortex RM-PCs_L
86 Frontal eye field RM-FEF_L
87 Dorsolateral prefrontal cortex RM-PFCdl_L
88 Medial premotor cortex RM-PMCm_L
89 Dorsolateral premotor cortex RM-PMCdl_L
90 Thalamic ROI with major

frontal connections
TM-F_L

91 Thalamic ROI with major
temporal connections

TM-T_L

92 Thalamic ROI with major
occipitoparietal connections

TM-OP_L

93 Caudate nucleus BG-Cd_L
94 Putamen BG-Pu_L
95 Pallidum BG-Pa_L
96 Accumbens nucleus BG-Acc_L

The order of names represents the order of nodes in the connectiv-
ity matrices depicted throughout the article.
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FIG. 3. (A) Exemplary local field source activity of two different nodes. Left: Fifteen seconds of local mean field activity.
Middle: Power spectra. While in the upper panel we see dominant alpha-oscillations, the source in the lower panel exhibits
a dominant delta-activity. Right: Topography of the alpha- and delta-rhythms. (B) Simulated electroencephalography
(EEG). Displayed are 15 sec of approximated EEG activity for six selected channels referenced to channel FCz. (C) BOLD times-
eries of regions of interest (ROIs) exhibiting high FC (top row) and low FC (bottom row). Left: Simulated BOLD signal. Right:
Empirical BOLD signal. Timecourses of identical ROIs are shown for empirical and simulated data. (D) Frequency spectra
of mean-field source activity, EEG, and BOLD signals of exemplary nodes/channels. Note the peaks in the delta-/alpha-
range for the electrophysiological simulations and in the < 0.1-Hz range for BOLD.

FIG. 4. EEG forward modeling—calculating the EEG channel signals yielded by the neuronal source activity at the cortical
nodes. (A) Triangulation of the Montreal Neurological Institute brain surface constructed by 81,920 vertices. The regions rep-
resenting the cortical and subcortical nodes are color coded. In this example, the large-scale model comprises 96 regions; how-
ever, 14 of them representing subcortical structures that do not directly contribute to the channel space signals and therefore
represented by a single color here. (B) The vertex normals represent the orientation of the dipoles and serve for the calculation
of the lead field matrix that describes the transformation from the signals at the cortical sources to the EEG channel space.
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which neuronal and glial processes contribute to the BOLD
signal? Via which molecular mechanisms do they influence
the BOLD signal? What are the precise space–time properties
of such a neurohemodynamic coupling?

Empirical and theoretical evidence indicates that different
types of neuronal processes, such as action potentials, synap-
tic transmission, neurotransmitter cycling, and cytoskeletal
turnover, have differential effects on the BOLD signal. For
example, synaptic transmission and transmitter cycling are
associated with higher metabolic demands than the conduc-
tion of action potentials (Attwell and Laughlin, 2001; Creutz-
feldt et al., 1975; Dunning and Wolff, 1937). This is in line with
a study showing a tighter relation of the BOLD signal to local
field potentials that mainly represent postsynaptic potentials
than to single- and multiunit activity, which represents action
potentials (Logothetis et al., 2001). With respect to the molec-
ular mechanism, the excitatory neurotransmitter glutamate
has been shown to be a major modulator of the BOLD signal
(Giaume et al., 2010; Petzold et al., 2008). Due to conflicting
findings, there is a longstanding debate whether and if
so how inhibitory neuronal activity can be detected by
fMRI (Ritter et al., 2002). The issue gets complicated since
likely multiple effects contribute at varying degrees in
different brain regions and under different conditions
(Iadecola, 2004).

The temporal properties of blood oxygenation/BOLD sig-
nal changes are modeled by either convolution of the approx-
imated neuronal activity with the canonical hemodynamic
response function assuming neurohemodynamic coupling
to be linear and time invariant (Wobst et al., 2001), using a
parametric set of response functions to account for variations
in coupling and for nonlinearities (Friston et al., 1998), or by
using the more elaborated biophysical hemodynamic model
referred to as the Ballon–Windkessel model (Buxton et al.,
1998; Friston et al., 2000, 2003; Mandeville et al., 1999). The
latter approach is a state model with four state variables: syn-
aptic activity, flow, volume, and deoxygenated hemoglobin.
It assumes a three-stage coupling cascade: (1) a linear cou-
pling between synaptic activity and blood flow; (2) a nonlin-
ear coupling between blood flow and blood oxygenation
and blood volume due the elastic properties of the venous
vessels—hence, the name Ballon–Windkessel model; and (3)
a nonlinear transformation of the variable flow and volume
into the BOLD signal (Friston et al., 2003).

In a full-brain model comprising oscillators that in contrast
to the here used Stefanescu–Jirsa model were less biophysi-
cally founded, local neural activity was approximated as
the derivative of the state variable and used as an input for
a neurohemodynamic coupling model (Ghosh et al., 2008).
Approaches that are based on spiking neuron models use fir-
ing rates as input for BOLD signal estimation. Authors moti-
vated that by the fact that in most cases, the firing rate is well
correlated with excitatory synaptic activity (Deco and Jirsa,
2012). In the present study, however, the Stefanescu-Jirsa
model provides six state variables with different biophysical
counterparts; futhermore, each of them is described by the sum
of the activity of three modes which model the activity of dif-
ferent neuronal subclusters of the inhibitory and the excitatory
populations. For the simulated BOLD data shown here, we
follow the line of Bojak and colleagues (2010) in assuming
that BOLD contrast is primarily modulated by glutamate re-
lease. Hence, we approximate the BOLD signal time courses

from the mean fields of the excitatory populations at each
node. The mean-field amplitude time courses are convolved
with a canonical hemodynamic response function as included
in the SPM software package (www.fil.ion.ucl.ac.uk/spm).
Since evidence exists that also inhibitory activity influences
blood oxygenation, different neuronal input functions, includ-
ing those representing a weighed sum of excitatory and inhib-
itory mean field activity, will be tested in the future. This will
allow us to explore different neurohemodynamic coupling sce-
narios for their ability to predict empirical data.

In Figure 3C, we show the approximated BOLD signal dy-
namics for regions of interest (ROIs) that exhibit high and low
functional connectivity (FC). In Figure 3C, we also show em-
pirical BOLD signal time courses extracted from the same cor-
tical nodes by averaging the BOLD signal over all voxels
contained by the respective ROI.

The frequency spectrum in Figure 3D indicates that the
simulated BOLD signals exhibit peak frequencies below
0.1 Hz; that is, they exhibit the typical low-frequency
oscillations reported previously for the resting-state BOLD
signal.

There is potential for further advancement of the neurohe-
modynamic model, for example, by including assumptions
about how astrocytes mediate the signal from neurons that
cause dilatation of arterioles and resulting increase in blood
flow considering the finite range of astrocyte projections
(Drysdale et al., 2010). It is pointed out by the authors of
this article that the distribution of effective connectivity be-
tween neurons and flow regulation points has not been mea-
sured experimentally yet, but is an area of active research
interest [see also Aquino and associates (2012)]. Incorporating
more details on the spatiotemporal aspects of neurohemody-
namic coupling would considerably increase the value of the
BOLD signal in model identification.

Identification of Spatiotemporal Motifs

Fitting computational models with actual recorded neuro-
imaging data requires several methodological considerations.
Fitting the model with short epochs of empirical EEG-fMRI
data yields individual model instances (parameter values).
Thereby, we determine parameter values that are related to
particular features of the recorded EEG-fMRI timeseries.
Parameter estimation is challenging due to the high number
of free parameters (number of free parameters of all six equa-
tions for the excitatory and inhibitory population times the
number of sources) and the resulting high model complexity.
There exist various approaches to address this challenge.
Model inversion approaches [e.g., Dynamic Causal Modeling
(Daunizeau et al., 2009; Friston et al., 2003), Bayesian Inver-
sion, or Bayesian Model Comparison-based approaches]
build on the inversion of a generative model of only a few
sources (up to about 10). Although in principle suitable, at
the current stage of development, these approaches are in-
tractable in our case due to the high number of contributing
neural sources and the resulting combinatorial explosion of
parameter combinations. Bayesian methods are able to han-
dle noisy or uncertain measurements and have the important
advantage of inferring the whole probability distribution of
the parameters than just point estimates. However, their
main limitation is computational, since Bayesian methods
are based on the marginalization of the likelihood that
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requires the solution of a high-dimensional integration prob-
lem. Hence, in the context of TVB, the parameter values are
planned to be systematically inferred using an estimation
strategy that is guided by different principles:

� Parameter ranges are constrained and informed by bio-
physical priors (Breakspear et al., 2003; Larter et al.,
1999; Scherg and Berg, 1991; Sotero and Trujillo-Barreto,
2008).
� Dictionaries are created that associate specific parameter

settings with resulting model dynamics. This provides a
convenient way to fit the model with experimental data
using previously identified parameter settings as priors.
Aside from dictionaries that associate parameter settings
with mean-field amplitudes of large-scale nodes, we will
create dictionaries that associate typical mean-field con-
figurations of nodes with the resulting EEG and BOLD
topologies (see Section below).
� Parameter estimation is informed by integrating multiple

simultaneously recorded modalities on different spatio-
temporal scales by iteratively applying forward and in-
verse modeling.
� Inverse modeling of decoupled source activity is used to

estimate local node parameters for each of the nodes in-
dividually at a lower computational cost than estimating
parameters for the full system.
� Forward modeling of the full system is used to com-

pare emerging macroscopic properties on long tempo-
ral scales (e.g., FC patterns) to experimental data and
to infer global coupling parameters of the large-scale
system.
� Complementary information obtained from different

signals is used for refinement of ambiguous parameter
estimates.

Empirical data

Different neuroimaging methods capture different subsets
of neuronal activity, and their combination of several imaging
modalities provides complementary information that is cen-
tral to TVB. Observed data serve as a blue print for the mod-
el’s supposed output. Empirical data are considered when
initially selecting a certain model type. The data provide
also a reference when fine-tuning the model parameters.
Finally, the empirical data serve for model validation. That
is, one tests whether a model makes predictions of the behav-
ior of new empirical data.

EEG and fMRI data complement each other with respect to
their spatial and temporal resolution. In terms of temporal
resolution, fMRI’s limitations are twofold: First, the acquisi-
tion time of a whole volume, that is, scans of the full brain,
lies in the order of seconds. Second, the deoxygenation re-
sponse that follows changes of neuronal activity and that
builds the basis of the BOLD contrast provides a delayed
and blurred image of neuronal activity. The spatial resolu-
tion, however, can go up to the order of cubic millimeters.
fMRI is capable to assess activity in the entire brain, including
subcortical structures. EEG provides an excellent temporal
resolution in the order of milliseconds and hence captures
also fast aspects of neuronal activity up to frequencies around
600 Hz (Freyer et al., 2009; Ritter et al., 2008). Due to volume
conduction, the spatial resolution of EEG is limited to the
order of cubic centimeters, and the inverse problem prevents

an assumption-free localization of the underlying neuronal
sources.

Here we use the synergistic information that the two imag-
ing methods provide by employing simultaneously acquired
EEG and fMRI data (Ritter and Villringer, 2006) of nine
healthy subjects (mean age 24.6 years, five men) during the
resting-state; that is, the subjects were lying in the bore of
the MR scanner with their eyes closed being asked to relax
and not to fall asleep. Functional EEG-fMRI data were ac-
quired for the duration of 22 min. For fMRI, we employed
an echo planar imaging (EPI) sequence (repetition time = 1.94
sec, 666 volumes, 32 slices, voxel size 3 · 3 · 3 mm3).

For EEG recording, we used an MR-compatible 64-channel
system (BrainAmp MR Plus; Brain Products) and an MR-
compatible EEG cap (Easy Cap) using ring-type sintered
silver chloride electrodes with iron-free copper leads. Sixty-
two scalp electrodes were arranged according to the Interna-
tional 10–20 System with the reference located at electrode
position FCz. In addition, two electrocardiogram channels
were recorded. Impedances of all electrodes were kept
below 15 kohm. Each electrode was equipped with an imped-
ance of 10 kohm to prevent heating during switching of
magnetic fields. The EEG amplifier’s recording range was –
16.38 MV at a resolution of 0.5 lV; the sampling rate was
5 kHz, and data were low-pass filtered by a hardware 250-
Hz filter. EEG sampling clock was synchronized to the gradi-
ent-switching clock of the MR scanner (Freyer et al., 2009).

In addition, for each subject, we run different MR se-
quences to obtain structural data: diffusion-weighed MRI
(DTI), T1-weighed MRI with an MPRAGE sequence (TR
1900 msec/echo time (TE) 2.32 msec; field of view (FOV)
230 mm; 192 slices sagital; 0.9 · 0.9 · 0.9-mm3 voxel size), and
a T2 (TA: 5:52 min; voxel size 1 · 1 · 1 mm3; FoV 256 mm, TR:
5000 ms; TE: 502 ms) sequence.

Preprocessing of EEG (i.e., image-acquisition artifact and
ballistocardiogram correction) and of fMRI data (motion cor-
rection, realignment, and smoothing) has been described else-
where (Becker et al., 2011; Freyer et al., 2009; Ritter et al., 2007,
2008, 2009, 2010).

Brain region parcellation has been performed on a monkey
brain surface (Bezgin et al., 2012) following the mapping rules
of Kotter and Wanke (2005). The resulting parcellation was
deformed to the MNI human brain template using landmarks
defined in Caret (www.nitrc.org/projects/caret) (Van Essen
et al., 2001; Van Essen and Dierker, 2007). Following the
lines of Zalesky and Fornito (2009), we extracted two types
of connectivity measures from the diffusion-weighed data:
capacities and distances. There from, we derived two N · N
structural adjacency matrices (SAMs) that quantify the rela-
tive connectivity between all pairs of the N cortical regions
for each subject. The matrices approximate the macroscopic
aspects of white matter connectivity with a network model,
where cortical regions serve as vertices and fiber bundles as
edges. Since directionality of fiber bundles cannot be inferred
using DTI, connections are considered unidirectional, and
SAMs are hence symmetrical. Capacities are intended to re-
flect the maximum rate of information transmission of a
fiber bundle, which is assumed to be constricted by its mini-
mum cross-sectional area, since this diameter in turn limits
the maximum number of axons it can support. Thereby, it
is implicitly assumed that axons cannot be more closely
packed at a bottleneck, and that the capacity of each axon is
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proportional to its cross-sectional area. However, several
physiological aspects such as pathologies or degree of myeli-
nation might considerably influence connectivity. Capacities
are derived by constructing a 3D scaffolding graph that con-
tains a link between each pair of white matter voxels in a 26-
voxel neighborhood around each voxel for which their two
principal eigenvalues form a sufficiently small angle. Connec-
tivity between two regions is then measured as the number of
link-disjoint paths that connects the two regions in the white
matter graph, that is, the number of paths between two re-
gions that have no links in common. Further, we derived
the distances between the brain regions by calculating the
mean length of all tracts found to connect two regions in the
subjects’ native space. Individual tracts are represented as
edges on a graph, and their lengths were calculated using
the boost C ++ graph library. Before tractography and metrics
extraction, raw diffusion-weighed Digital Imaging and
Communications in Medicine images were converted to the
Neuroimaging Informatics Technology Initiative format, and
gradient and b-vectors were computed using the MRIcron
package. A brain mask was generated using the Brain Extrac-
tion Tool from the FSL package. FSL eddy current correction
was used to correct for distortions caused by eddy currents
and head motion. Diffusion tensor models were fitted to the
data using DTIFIT from the FSL package. ANTS was used
for coregistration of subjects’ T1 images to the standard MNI
brain (MNI_152_T1_1 mm) and for coregistration of subjects’
T1 images to their respective DTI images. T2 images were ac-
quired to improve the accuracy of the registration from T1 to
DTI images. Therefore, a linear transform was computed to
register T1 data to T2 data and a nonlinear transform for reg-
istering T2 to DTI images, and both transforms were concate-
nated. Further, T1-to-MNI and T1-to-DTI transforms were
concatenated to produce an MNI-to-DTI transform for imple-
mentation of our parcellation scheme. White matter and gray
matter segmentation was performed on T1 data using N3.
Alternatively, all image preprocessing steps as well as fiber
tracking can be integratively performed with software MRTrix.
The connectivity matrices can be subsequently estimated us-
ing the connectome mapper pipeline, which is part of the
connectome-mapping toolkit.

The advantage of operating in source space

The dimensionality of the parameter space of the full
model is equal to the number of sources (96, in the present
example) times the number of free parameters per source
(12) yielding, together with two additional global parameters,
1154 free parameters in total for the coupled large-scale
model. Certainly, the number of free parameters of the cou-
pled system is far too high to be fitted concurrently. However,
uncoupling sources and inverting their local equations, we
only need to fit 12 parameters at a time. The dynamic equa-
tions of the uncoupled nodes of the large-scale model are
used as inverse models that are individually fitted with the
EEG data to yield parameter sets for local nodes. The mean-
field output of a single node with recorded EEG can be fitted
in the source space by first applying a source reconstruction
scheme to the EEG data and then subtracting the impact of
coupled nodes from local mean-field activity of each node.
The full large-scale model, on the other hand, is used as a for-
ward model and fitted with a simultaneously acquired BOLD

signal to recreate its spatial topology pattern and slow wave
dynamics and to decide among ambiguous solutions that
were computed in the previous parameter estimation step.
As a result, instead of estimating all parameters for the full
large-scale model at once, we only have to calculate a source
reconstruction once for the EEG data and are then able to effec-
tively infer the local parameter sets. Thereby, parameters that
need to be fitted reduce from k*n to n, where n is the number
of parameters of a local node and k the number of nodes.

Backward solution: estimating source time courses
from empirical large-scale signals

Noninvasive neuroimaging signals in general constitute
the superimposed representations of the activity of many
sources leading to high ambiguity in the mapping between
internal states and observable signals; that is, the pairing
between internal states of the neural network and observed
neuroimaging signals is surjective, but not bijective. As a con-
sequence, the EEG and MEG backward solution is underde-
termined. Hence, while the forward problem of EEG has a
unique solution, the inverse problem of EEG, that is, the esti-
mation of a tomography of neural sources from EEG channel
data, is an ill-conditioned problem lacking a unique solu-
tion (Helmholtz, 1853; Long et al., 2011). We address this
ill-posedness by the introduction of the aforementioned con-
straints, namely, realistic, subject-specific head models seg-
mented from anatomical MR images, physiological priors,
and source space-based regularization schemes and con-
straints. A commonly used prior is to restrict neural sources
using the popular equivalent current dipole model (Scherg
and Von Cramon, 1986) reducing the backward problem to
the estimation of one or a few dipole locations and orienta-
tions. This approach is straightforward and fairly realistic,
since the basis of the described modeling approach rests on
the assumption that significant parts of a recorded EEG
timeseries are generated by the interaction of large-scale
model sources. Consequently, we can incorporate the location
and orientation information of these sources as priors,
thereby improving the reliability of the backward solution
in this modeling scenario.

More general source imaging approaches that attempt to
estimate source activity over every point of the cortex rest
on more realistic assumptions, but need further constraining
to be computationally tractable (Michel et al., 2004). Never-
theless, current density-field maps are not necessarily closer
to reality than dipole source models, since the spatial spread
is due to imprecision in the source estimation method rather
than a direct reconstruction of the potential field of the actual
source (Plummer et al., 2008).

Source activity is estimated from a recorded EEG times-
eries, by inversion of an LFM that is based on an equivalent
current dipole approach. Source space projection can be
done with commonly used software packages (e.g., the
open-source Matlab toolbox FieldTrip or BrainStorm or the
commercial products BrainVoyager or Besa) by inverting a
forward solution on the basis of given source dipole positions
and orientations and a volume conductor model; all of the
above can be individually estimated from anatomical MRI
data of subjects (Chan et al., 2009). Further, priors derived
from BOLD contrast fluctuation can be exploited to inform
source imaging [cf. technical details and reviews: (Grech
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et al., 2008; He and Liu, 2008; Liu and He, 2008; Michel et al.,
2004; Pascual-Marqui, 1999)].

Reducing parameter space by operating with
uncoupled local dynamics

The parameter space can be considerably reduced by regu-
larizing the model from coupled dynamics to uncoupled dy-
namics by disentangling all coupled interactions. That is, for a
given node, the incoming potentials from all other nodes are
subtracted from each time series. In TVB, the long-range
input received by a node i from all coupled nodes j 6¼ i is
modeled by adding the weighed and time-delayed sum of
all excitatory mean-field potentials +j = ixijxj(t�Dtj)

� �
of all

coupled nodes as described in Equation 1 to its excitatory
uncoupled regional mean field xi as described in Equation 2.

This summation operation is reversible and therefore
allows the reconstruction of intrinsic source activity by invert-
ing the assumptions upon which forward modeling is based.
For the sake of simplicity, the noise term g(t) is omitted in the
reverse procedure. Since xi(tþ 1), xi(t) and +j = ixijxj(t�Dtj)

� �
can be empirically measured for each time-step t = 1,., N�1,
with N being the total number of data points, and approxi-
mated by source imaging, inserting their respective values,
rearranging the equation, and solving for _xi(t) yield the
mean-field change for the next future time step:

f ( _xi(t))¼ xi(tþ 1)� xi(t)� +j 6¼ixijxj(t�Dtj))dt
� �

=dt (6)

Now, since a subset of the state vector [xi(t) and �xi(t)� is
known for each timestep, model parameters can be obtained
for time snippets of the uncoupled source timeseries by using
a procedure for estimating parameters of dynamical systems
as described below.

Initial coarse scanning of the parameter space

To get acquainted with model dynamics, we start by laying
a coarse grid over the parameter space and simulate mean-
field activity for grid points (Fig. 1B, C). Subsequently, the
resolution of the grid can be increased according to desired
accuracy or space and runtime constraints (some other ap-
proaches are outlined below). Each resulting waveform is
classified according to several criteria that discern specific dy-
namical regimes. This could be, for example, the dynamic be-
havior of the system’s state variables such as fixed points or
limit cycles—switching between the two has been shown,
for example, for the posterior alpha-rhythm (Freyer et al.,
2009, 2011, 2012). Another feature could be the expression
of certain spatial patterns such as resting-state networks
(RSNs) known from fMRI (Greicius et al., 2003; Gusnard
and Raichle, 2001; Mantini et al., 2007; Raichle et al., 2001)
or characteristic spectral distributions (brain chords). With re-
spect to the power spectrum, a feature would be the 1/f char-
acteristics or the alpha-peak (Buzsaki, 2006).

During this initial parameter space scanning, only coupling
parameters (K11, K12, K21) and distribution parameters of
membrane excitabilities (mean m and dispersion r) are var-
ied, since these are the main determinants of the resulting dy-
namic regime of the mean field (Fig. 1). Parameters that
correspond to biophysical properties of the respective neuron
populations ( p1–p12) are optimized in subsequent steps.

In Figure 2B, we show an example of how the coarse grid
method has identified parameter settings that yield patterns/

topologies of coherent BOLD activity very similar to the FC
we observe in empirical data (r = 0.47).

Snippets, motifs, and dictionaries

Since the discovery of EEG, several recurrent EEG features
and patterns have been identified and associated with vari-
ous conditions. Among many other instances, waveform
snippets have been termed and cataloged as, for example,
spike-and-wave complexes, burst suppression patterns,
alpha-waves, lambda-waves, and so on (Stern and Engel,
2004). However, all of these temporal motifs have been iden-
tified by subjective visual inspection of EEG traces and not by
a principled and automated search. Nor have these macro-
scopic neuronal dynamics been classified by means of the in-
ternal behavior of a system that models the underlying
microscopic and mesoscopic physiological mechanisms.
Mueen and associates (2009) extend the notion of timeseries
motifs to EEG timeseries with a motif being an EEG snippet
that contains a recurrent (and potentially meaningful) pattern
in a set of longer timeseries. They designed and tested an al-
gorithm for automated motif identification and construction
of dictionaries that was able to identify typical meaningful
EEG patterns such as K-complexes. We incorporate the no-
tion of a motif as a recurring prototypic activity pattern, but
extend it and conceptualize a neural motif as an activity pat-
tern that corresponds to the dynamic flow of a state variable
on an underlying geometrical object in the state space of a
neuronal ensemble, that is, a structured flow on a manifold
( Jirsa and Pillai, 2012). In short, a neural motif is a snippet
of a neuronal timeseries that can be reproduced by a neuronal
model under fixed parameter settings. Further, we extend the
ideas of Prinz and colleagues (2003) and Mueen and col-
leagues (2009) of building a dictionary of waveform patterns.
Upon expressing timeseries by a series of motifs and adding
unobserved underlying processes (i.e., parameter settings
and the flow of unobservable state variables), we ultimately
associate these microscopic mechanisms with emerging mac-
roscopic properties of the system, thereby we identify emerg-
ing macroscopic system dynamics such as RSNs with the
local and global interaction of the timeseries motifs, that is,
the system’s flow on low-dimensional manifolds in the state
space of the model. Exemplary one-second motif patterns of
source activity and corresponding model fits that resulted
from a preliminary random search (see the section Stochastic
optimization) are shown in Figure 5.

Building a dictionary of dynamical regimes

Automatic parameter optimization heuristics such as evo-
lutionary algorithms are often able to find acceptable solu-
tions in complex optimization problems. However, it is
very likely that model parameters that correspond to variable
biophysical entities are subject to ongoing variations through-
out the course of even short time series, and it hence becomes
necessary to refit the parameters for every time segment. Fur-
ther, a wide range of EEG patterns or time-series motifs are
highly conserved and repeatedly appear over the course of
an EEG recording (Stern and Engel, 2004). Therefore, it is un-
reasonable to perform time-consuming searches through
the very large parameter space of the coupled network (the
number of model instances is 1096 for a parcellation of the
brain into 96 regions and 10 free parameters per node) for
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every short epoch of experimental data. Besides source activ-
ity decoupling, we plan to ameliorate this expensive search
problem by storing estimation results in a dictionary that as-
sociates parameter settings with dynamical regimes.

This dictionary has three major purposes: First, it will help
to define priors for subsequent parameter fitting routines and
hence reduce computational cost. Second, it is in itself a
knowledge database that relates microscopic and mesoscopic
biophysical properties—as defined by model parameters—
with macroscopic neuronal dynamics. Third, it enables con-
tinuous refinement of previous motif candidates. We assume
that motifs are highly conserved across subjects, since they re-
semble instances of prototypic population activity. However,
waveform patterns will be subject to small variation, for ex-
ample, by noise from ongoing background activity. After
generating an initially large number of similar good-fitting

model waveforms, each waveform is evaluated for its fitness
to explain motif patterns across a large number of subjects
and signal features. Upon exposure to an increasing number
of motif patterns from different subjects and elimination of
bad-fitting dictionary entries, only the most generic motif in-
stances will remain in the dictionary. Therefore, only those
motif patterns from a class of similarly shaped waveforms
that have the highest explanatory power can be seen as
most generic and remain in the dictionary.

Such a dictionary maps specific parameter settings to the
emerging prototypical model dynamics. Besides waveform,
timeseries snippets are classified according to a variety of dy-
namical features that have relevance for cognition. This may
be geometric objects in the state space, that is, flows and man-
ifolds, or a certain succession of relevant signal features, for
example, a trajectory of the relative power of frequency

FIG. 5. Exemplary motif-fitting results. Shown are one-second snippets of source estimates from EEG (red) and correspond-
ing model fits (blue). Parameters were obtained using a random Monte Carlo search routine that optimized waveform corre-
lation after running for one hour on a single core of a 2.13-GHz Intel Core 2 Duo processor. Despite high correlation coefficients
(r = 0.78 for the best fit), some waveform features were not captured appropriately. We expect more sophisticated parameter
estimation approaches (cf. section A, choice of parameter estimation algorithms) to produce even better fits.
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bands in each source node or other variables of interest such
as RSN patterns, or the presence of prominent features of EEG
activity such as sleep spindles, alpha-bursts, or K-complexes.
An illustration of the proposed operational flow is shown
in Figure 6.

When fitting new timeseries, instead of re-estimating the
parameters for a dynamic regime that might have been in-
ferred before, a dictionary search is conducted, and observed
dynamics are related to probable parameter settings. The idea
of generating simulation databases was previously success-
fully applied to several neuroscience models (Calin-Jageman
et al., 2007; Doloc-Mihu and Calabrese, 2011; Günay et al.,
2008, 2009; Günay and Prinz, 2010; Lytton and Omurtag,
2007; Prinz et al., 2003).

Dictionary-based signal separation was previously suc-
cessfully applied to several neuroscience problems (Zibulev-
sky and Pearlmutter, 2001).

To recreate experimental time-series with TVB, we com-
pare variables of interest stored in the dictionary with empir-
ical data. The database can be screened for models that
reproduce observed neuronal behavior, and dictionary
entries with minimal discrepancy are used as priors for sub-
sequent parameter estimation to keep the search space
small; that is, they are used as initial conditions and for the
definition of search space boundaries. Further, statistics
over the database can give an insight into how specific
model configurations relate to the observed neuronal dynam-
ics. To construct the database, the results of previous param-

eter estimation runs, that is, parameter settings, are stored
along with the generated mean-field waveform and metrics
of interest that quantify the dynamics of this waveform.
Database searches can be based, for example, on waveform
correlation or other similarity metrics such as mutual
information or spectral coherence, as well as combinations
thereof.

Model fitting

The benefits of tuning a model to multimodal empirical
data. Simultaneous EEG-fMRI recordings enable us to fit
model activity with two different empirical target variables
that exist on two different spatiotemporal scales.

On the one hand, the estimated spatiotemporal BOLD ac-
tivity emerging from fully coupled large-scale model simula-
tions are fitted to match those of empirically measured slow
hemodynamic BOLD activity. On the other hand, fast electric
dynamics of individual large-scale nodes are fitted to match
the corresponding localized source activity derived from
EEG source imaging.

Accordingly, we use different metrics to quantify the good-
ness of fit for the two different spatiotemporal scales. In the
case of localized source activity, our target is the reproduction
of salient features of the mean-field waveform of source activ-
ity. Therefore, we aim to optimize the metrics of interest
between empirical and model timeseries such as the least-

FIG. 6. Model-based knowledge generation. The virtual brain estimates parameter sets that enable the model-based replica-
tion of short empirical source activity timeseries. Upon emulation of observable timeseries, internal model state variables can
then be analyzed to infer knowledge about unobservable system states. Empirical EEG and BOLD data are used to estimate
electrical source activity. Employing individual structural priors (fiber-tract capacities and distances), each node’s activity can
be disentangled from the influences of the other nodes. Spatial and temporal properties of the resulting data are compared to
the model output. Parameter settings yielding the best fit are identified. A central point is the identification of spatiotemporal
motifs, that is, the identification of similar dynamical behaviors in simulated and empirical data. Matching empirical- and
model-based structural flows on manifolds are stored in a dictionary, for example, in the form of prototypical source time-
courses. Priors, that is, initial parameter settings known to yield specific classes of dynamics observed in empirical data,
are taken from the dictionary for subsequent simulations. Taking advantage from the pool of existing knowledge increasingly
reduces the costs for parameter optimization for different empirical dynamical scenarios. In other words, an integrative
method of induction and deduction serves our model optimization procedure. Statistical analysis of the parameters sets stored
in the dictionary yields the desired insight about which biophysical and/or mathematical settings are related to the different
observed brain states.
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squares fit between waveforms. Other optimization targets
include waveform correlation or coherence and other nonlin-
ear dependence measures such as mutual information. In the
case of simulated BOLD signals, we aim for reproducing the
global spatial interaction topology. To match spatial FC pat-
terns, the correlation between experimental and simulated
FC matrices is maximized.

On the one hand, this enables the forward modeling-based
exploration of conditions under which certain FC patterns
emerge. On the other hand, we use the fMRI signal to refine
ambiguous parameter estimates in situations where it is not
possible to determine a unique parameter set that reproduces
source activity. This twofold strategy is motivated by the fact
that the set of parameters of the full large-scale model can be
divided into global and local parameters. While global pa-
rameters specify the interaction between distant brain re-
gions, each set of local parameters governs the dynamics of
its associated node. To reproduce brain activity by a model,
it is necessary to emulate both the uncoupled local dynamics
as well as the dynamics emerging from the global interactions
between sources. By decoupling the source activity according
to the global coupling parameters that were obtained during
the forward estimation step, we gain uncoupled source activ-
ity. Subsequently, each local node is tuned to reproduce
this uncoupled source activity. Note that there is no experi-
mental counterpart of this activity since directly measuring
uncoupled intrinsic region activity is impossible as long as
brain regions are connected and interacting.

However, if uncoupled local populations are able to repro-
duce this virtual source activity estimated from empirical
data, the full large-scale model will reproduce the originally
measured activity after being recoupled again. This uncou-
pling scheme resembles the straightforward inversion of
the coupling scheme implemented in the model. After recou-
pling sources and performing forward simulations with both
estimated parameter sets, the measured EEG-fMRI data are
generated on both spatiotemporal scales preserving local
source activity that translate to fast EEG activity as well as
global source interaction patterns that translate to slow
BOLD patterns.

A choice of parameter estimation algorithms. In the fol-
lowing, we review three different parameter estimation ap-
proaches we consider most important for accomplishing
this task and a method for refinement of solutions based on
the integration of the fMRI data. The three approaches are
based on stochastic optimization, state observers, and dimen-
sionality reduction. Up to now, only the first approach was
used for parameter estimation in the context of TVB, yet we
aim to also use the others in the future.

Stochastic optimization. Stochastic optimization (Spall, 2003)
is a Monte Carlo parameter estimation strategy that is able to
conquer high-dimensional search spaces using random vari-
ables. In contrast to a fully randomized search that chooses pa-
rameters without any further constraints, during stochastic
search, parameters are not generated in an entirely random
fashion, but multivariate Gaussian distributions are centered
on some initial values, and the algorithm draws a large number
of initial parameter sets from this distribution for evaluation.
Then, if new points are found to generate better matching re-
sults, the multivariate distribution is moved and centered at

the new best points in the parameter space. Further, the variance
of the distribution is contracted at the end of each iteration, and a
smaller part of the search space is searched more thoroughly.
Multiple instances of this search engine can be initialized at dif-
ferent starting points and evaluated to increase the chances to
find a global minimum and to decrease the probability of getting
stuck in the local minima. Examples of how this algorithm is
able to fit different motifs found in the source space with the Ste-
fanescu–Jirsa model results are shown in Figure 5.

More sophisticated stochastic methods mimic strategies
from biological evolution [Evolutionary computation (Fogel,
2005)], cooling of metals [Simulated annealing (Brooks and
Morgan, 1995)], and other biological or physical phenomena
[e.g., Ant Colony Optimization, Taboo Search, and particle
swarm methods (Dorigo and Di Caro, 1999)].

In the present case, evolutionary approaches are well
suited for both parameter sets: the forward model-based esti-
mation of the set of global parameters on longer time-scales
and the inverse model-based estimation of local parameters
for short time-scales.

Further, the two approaches can be used in a complemen-
tary manner to mutually inform themselves about good start-
ing values that correspond to macroscopic phenomena in the
case of source space fits or to microscopic phenomena in the
case of large-scale fits. For instance, an optimization routine
that fits local parameters with snippets that show dynamics
on a short time scale can be initialized with parameter values
that were obtained during forward simulations that yielded
the emergence of RSNs that were observed along with these
snippets during the experiment.

Although metaheuristics cannot guarantee to find the
global optimum, they often compute the vicinity of global so-
lutions in modest computation times and are therefore the
method of choice for large parameter estimation problems
(Moles et al., 2003).

State observers. In the framework of control theory, the
challenge of parameter estimation in complex dynamical sys-
tems is approached by the implementation of state observers
aiming to provide estimates of the internal states of a system,
given measurements of the input and output of the system.
Recently, several state observer techniques have been devel-
oped and successfully applied to biological systems, and
the use of extended and unscented Kalman filtering methods
has become a de facto standard of nonlinear state estimation
(Lillacci and Khammash, 2010; Quach et al., 2007; Sun et al.,
2008; Wang et al., 2009). When parameters are assumed to
be constants, they are considered as additional state variables
with a rate of change equal to zero. By incorporating the spe-
cific structure of the problem using this state extension, the
problem of parameter identification is converted into a prob-
lem of state estimation, viz., determining the initial conditions
that generate an observed output.

State observers are typically two-step procedures: first, the
process state and covariance are estimated from the model.
Then, feedback from noisy measurements is used to improve
the previous prediction, and the process is repeated until con-
vergence. However, convergence of state estimation is not
guaranteed in the nonlinear case if the initial estimates are
chosen badly. Even worse, the process of state extension
can introduce nonuniqueness of the solution, that is, several
sets of parameters or ranges of parameters that produce
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equally good fits. In this case, the model is referred to as being
nonidentifiable.

Dimensionality reduction. A third approach we do con-
sider relevant for generating a dictionary of dynamic motifs,
since it corresponds to the state space equivalent of the times-
eries motifs: flows on low-dimensional manifolds in a higher
dimensional state space.

A data vector of length d can be regarded as a point that is
embedded in a d-dimensional space. However, that does not
necessarily mean that d is the actual dimension of the data.
The intrinsic dimensionality (ID) of a data set equals the mini-
mum number of free variables needed to represent the data
without the loss of information. Equivalently, the ID of that
data vector is equal to M, if all its elements lie within an M-
dimensional subspace. Each extra dimension in regression
space considerably hardens parameter estimation (curse of
dimensionality); therefore, we seek for a low-dimensional de-
scription of our data. Manifolds can be informally described
as generalization of surfaces into higher dimensions. Signals
and other data can often be naturally described as points and
flows on a manifold; that is, they are manifold-valued (Perdikis
et al., 2011). Several physiologically motivated models of neu-
ronal activity indicate that neuronal activity patterns have an
underlying structure that is inherently lower dimensional and
contained on the surface (or tightly around the surface) of a
low-dimensional manifold that is embedded within the
higher-dimensional data space (Deco et al., 2010; Freyer et al.,
2009, 2011, 2012). Therefore, we view manifolds as geometric
representations of meaningful system dynamics. To reconstruct
manifolds, viz., manifold learning, one seeks for a mapping
that projects higher-dimensional input data onto such a low-di-
mensional embedding while preserving important characteris-
tics of the data. Therefore, describing the system in terms of a
dynamic model is equivalent to learning the structure of state
space manifolds. The properties of the manifold on which neu-
ronal activity is embedded directly correspond to the intrinsic
dynamics of the system. It follows that a model that is intended
to capture neuronal dynamics must necessarily reproduce
flows on this underlying manifold. Thus, structured flows on
manifolds can be regarded as a compact description of the sys-
tem’s dynamics and therefore resemble the state space equiva-
lent of our concept of timeseries motifs.

We outline a three-step procedure for a manifold-based
parameter estimation scheme that is based on dimensionality
reduction, manifold learning, and subsequent parameter esti-
mation as proposed by Ohlsson and colleagues (2007). The
goal of this procedure was to infer a low-dimensional map-
ping of data points. When data points become constrained
to a lower-dimensional manifold, and also regression vectors
are, and therefore the dimensionality of the regression prob-
lem is equivalently reduced.

Step 1: Dimensionality estimation: The first step in this
process is to estimate the ID of the data. We assume that ob-
served data lie on a limited part of space, and that the dimen-
sionality of this manifold corresponds to the ID of the data,
and to the degrees of freedom of the underlying system
from which it is generated. It follows that the dimensionality
of the data points toward the type and order of a model that
can be used for describing the system or to the number of pa-
rameters that needs to be estimated if the structure of the

model is already known. Consequently, the target dimension
for the subsequent manifold learning step, which must be
provided for most approaches, is set to the ID of the dataset.
Dimensionality estimation (DE) methods can be classified as
local or global (Camastra, 2003; Van der Maaten, 2007). Local
methods use the information contained in neighborhoods of
data points. Specifically, they rest on the observation that
the number of data points within a hypersphere around a
data point with radius r grows proportionally to rd, with d
being the ID of the data. Thus, d can be estimated by counting
and comparing the numbers of data points in hyperspheres
with different radii. Global DE methods estimate the dimen-
sionality of the full dataset. For instance, principal component
analysis (PCA) can be used to estimate the dimensionality of a
dataset by defining a cutoff value for the amount of variance
that is explained by principal components. Then, the ID of a
dataset is equal to the number of principal components that
lie above the threshold, since there are typically d components
that explain a large amount of variance (where d is the ID of
the dataset), whereas the remaining eigenvalues are typically
small and only account for noise in the data.

Step 2: Manifold learning: During this step, one aims to
find a transformation of the data into a new coordinate repre-
sentation on a manifold, termed intrinsic or embedded coor-
dinates, that is, a mapping between the high-dimensional
space down to the lower-dimensional space that retains the
geometry of the data as far as possible. Many algorithms
for manifold learning and dimensionality reduction methods
exist and are apart from parameter estimation valuable
tools for classification, compression, and visualization of
high-dimensional data (Van der Maaten et al., 2009); how-
ever, they seldom produce an explicit mapping from the
high-dimensional space to intrinsic coordinates. Instead, the
algorithm has to be rerun as new data are introduced. How-
ever, Ohlsson and his colleagues (2007) propose a remedy for
this problem by linearly interpolating between implicit map-
pings. In the remainder of this section, we will list some ap-
proaches to exemplify some general ideas manifold learning
techniques are based on and leave it to the reader to pick a
suitable method for the specific properties of their data
from the referenced literature. For dimensionality reduction
algorithms, one commonly distinguishes between linear tech-
niques, including traditional methods such as PCA and linear
discriminant analysis (LDA), and nonlinear techniques as
well as between the global and local techniques. The purpose
of the global techniques is to retain global properties of the
data, while local techniques typically only maintain proper-
ties of small neighborhoods of the data. Similar to PCA and
LDA, global nonlinear techniques preserve global properties
of the data, but are, in contrast, able to generate a nonlinear
transformation between the high- and low-dimensional
data. Multidimensional scaling (MDS) (Cox and Cox, 2000)
seeks a low-dimensional representation that preserves pair-
wise distances between data points as much as possible by
minimizing a stress function that measures the error between
the pairwise distances in the low-dimensional and the high-
dimensional representation. Stochastic proximity embedding
(Agrafiotis, 2003) also aims at minimizing the multidimen-
sional scaling raw stress function, but differs in the
efficient rule that it employs to update the current estimate
of the low-dimensional data representation. Isomap
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(Tenenbaum, 1998) overcomes a weakness of MDS, which is
based on Euclidean distances, by accounting for the distribu-
tion of neighboring data points using geodesic distances. If
the high-dimensional points lie on a curved surface, Eucli-
dean distance underestimates their displacement, while geo-
desic (or curvilinear) distance measures their actual stretch
over the manifold. Maximum variance unfolding (Wein-
berger et al., 2004) aims at unfolding data manifolds by max-
imizing the Euclidean distance between data points while
keeping the local geometry, that is, all pairwise distances in
a neighborhood around each point, fixed. Diffusion maps
(Lafon and Lee, 2006) are constructed by performing random
walks on the graph of the data. Therefore, a measure of the
distance of data points is obtained, since walking to a nearby
point is more likely than walking to one that is far away.
Using this measure, diffusion distances are computed with
the aim to retain them in the low-dimensional representation.
Kernel PCA is an extension of PCA incorporating the kernel
trick (Schölkopf et al., 1998). In contrast to traditional linear
PCA, Kernel PCA computes the principal eigenvectors of a
kernel matrix, instead of those of the covariance matrix. The
kernel matrix is computed by applying a kernel function to
data points that map them into the higher-dimensional kernel
space, yielding a nonlinear mapping. Generalized discrimi-
nant analysis (Baudat and Anouar, 2000) is the kernel-based
reformulation of LDA that attempts to maximize the Fisher
criterion (similar to LDA) in the higher-dimensional kernel
space. Multilayer autoencoders (Hinton and Salakhutdinov,
2006) are feed-forward networks with an odd number of hid-
den layers that are trained to minimize the mean-squared
error between the input and output, which are ideally
equal. Consequently, upon minimization, the middle layer
constitutes a coded, low-dimensional representation of the
data. Local nonlinear techniques include local linear embed-
ding (LLE), Laplacian eigenmaps, Hessian LLE, and local tan-
gent space analysis (LTSA). LLE (Roweis and Saul, 2000)
assumes local linearity, since it represents a data point as a
linear combination of its nearest neighbors by fitting a hyper-
plane through these points. During Hessian LLE (Donoho
and Grimes, 2003), the curviness of the high-dimensional
manifold is additionally minimized when embedding it into
a low-dimensional space. Similarly, LTSA (Zhang and Zha,
2004) represents high-dimensional data points by linearly
mapping them to the local tangent space of a data point.
Thereby, it provides the coordinates of the low-dimensional
data representations, along with a linear mapping of those co-
ordinates to the local tangent space of the high-dimensional
data. The Laplacian eigenmaps technique (Belkin and Niyogi,
2001) preserves pairwise distances between neighboring
points by finding a representation that minimizes the dis-
tances between a data point and its k nearest neighbors.
Apart from strictly global or local methods and extensions
and variants thereof [cf. Van der Maaten et al. (2009) for fur-
ther reading], there also exist hybrid techniques that combine
both types of methods by computing several linear local mod-
els along with a global alignment of these local embeddings,
for example, locally linear coordination (Teh and Roweis,
2002), manifold charting (Brand, 2003), and coordinated fac-
tor analysis (Verbeek, 2006).

Step 3: Manifold-based gray box identification: Manifold-
based regression (Ohlsson, 2008) can be combined with prior

physical knowledge about the dynamics of the data in the
form of a dynamical model. Ohlsson and Ljung (2009) re-
cently developed a technique for manifold-based gray box
system identification that they dub weight determination by
manifold regularization. They propose a new regression algo-
rithm that enables the inclusion of prior knowledge in high-
dimensional regression problems, that is, gray-box system
identification. The physical knowledge expressed by a dy-
namical model is introduced into the regression problem by
addition of a regularization term to the optimization function
that results in high cost, if the regressors expressed in the co-
ordination of the manifold do not behave according to the
physical model. The manifold generating optimization prob-
lem then also minimizes over the states of the state space
model and hence tries to find a coordination of the manifold
that can be well described by the assumed model and at the
same time fit well with the manifold assumption and the
measured output. Apart from this specific implementation,
a manifold-based approach offers exciting possibilities for
the integration of empirical data with physical models as
well as visualization and analysis of dynamical properties
of the system under study that should be extended in the fu-
ture.

Identifiability: capitalizing on multimodal empirical da-
ta. When the number of unknown parameters is very
large, parameter estimation schemes often find several
equally fitting parameter sets, or ranges of values, instead
of a unique optimal solution. In these cases, the model is qual-
ified as nonidentifiable. Due to the large extend of the param-
eter space of the full model, the solution of parameter
estimation will be characterized by large uncertainties and
nonuniqueness with a high probability of existence of infinite
sets of parameters that are equally likely to be correct. Given
one or several sets of model parameters that generate equally
good estimates, one may ask, what is the probability that
model parameters are correct? The parameters of the under-
lying natural system, that is, the biophysical properties that
relate to our model parameters, only have a single realization
at a particular time.

In a model situation, the likelihood of a parameter set is the
probability that an observed data set is generated given this
parameter set. However, the computation of likelihoods is
very costly when the dimensionality of the data is high. As
a remedy, it is possible to include additional information
about the system under study that was not used for fitting.
To improve the probability of finding the correct solution,
we introduce additional criteria that discern plausible from
implausible estimates. In our case, we plan to obtain this ad-
ditional information from an fMRI signal that was simulta-
neously acquired with the EEG.

In the context of biological systems, this problem has been
addressed by an approach that combines extended Kalman
filtering with a posteriori calculated measures of accuracy
of the estimation process based on a v2 variance test on mea-
surement noise (Lillacci and Khammash, 2010). The core idea
is to examine the reliability of estimates after they have been
computed by using additional information gathered from
noise statistics from the experiment to ensure that the esti-
mated parameters are consistent with all available empirical
data or otherwise defined constraints. After each estimation
step, the algorithm checks whether the estimate satisfies
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several constraints. This step can be cast as a separate optimi-
zation problem. If the estimate fullfills the constraints, the
algorithm was able to recover the unique solution to the
problem and continues with this estimate. If not, most likely,
no unique solution exists, and the estimate is replaced by the
solution of the constraint satisfaction problem, and the pa-
rameter search continues on the basis of the thereby yielded
refined estimate.

Following these lines, we propose an additional a posteri-
ori test for refinement of candidate parameter sets that were
obtained during the estimation steps using one of the
above-listed parameter estimation approaches. In our case,
we exploit the existence of two simultaneously acquired
data sets that capture partially complementary dynamics on
two different time scales. While fitting the model to the fast
dynamics, we use the slow BOLD dynamics for verifying
the previous estimates and selecting among ambigious esti-
mates. The time resolution of fMRI observations is much
lower than that of EEG observations, with typically one data-
point every 2 sec. In principle, this setup could be modeled by
directly fusing both signals using a time-varying observation
matrix integrating EEG and fMRI into a single-observation
model (Purdon et al., 2010). Moreover, it would also be
possible to directly integrate BOLD-derived inequality con-
straints by using constrained Kalman filtering approaches
(Simon and Chia, 2002; Simon and Simon, 2003) or to extend
approaches for the slow–fast systems. However, BOLD
observations do not need to be integrated directly in the
observation model, but can be used it in the line of Lillacci
and Khammash (2010) for selection between ambiguous
estimates.

What is the additional information that we can extract
from BOLD data that allow a further refinement of initial es-
timates? It is well recognized that EEG mainly reflects the
superpositioned and spatiotemporally smoothed version of
electrical activity of pyramidal neurons in the superficial lay-
ers of the cortex oriented that are oriented perpendicular to
the scalp (Buzsáki et al., 2012). Since we fitted the model
with the source-projected EEG data, it is reasonable to assume
that only the activity of excitatory neurons is captured. How-
ever, there is evidence estimating that the activity of inhibi-
tory neurons, which comprise about 15%–20% of cortical
neurons, accounts for 10%–15% of the total oxidative metab-
olism (Attwell and Iadecola, 2002). In contrast to pyramidal
cells, internerons that majorily represent the inhibitory cell
fraction do not have a dipolar configuration and hence do
not contribute to the EEG signal—while they are suppoed
to have a metabolic demand. Despite there is ongoing debate
whether and how inhibitory activity influences the BOLD sig-
nal (Ritter et al., 2002), consensus exists that fMRI sees a frac-
tion of neuronal activity that—although indirectly—EEG is
not able to detect. Therefore, it becomes possible to use the
additional information that is unobservable with EEG to re-
fine previous fits of the model with EEG data. A simple exam-
ple of several candidate parameter sets that produce equally
fitting, similarly shaped electric waveforms have been identi-
fied. Thereby, mean-field timeseries of the inhibitory popula-
tion have been generated by the model. This additional
information can then be incorporated into forward BOLD
data simulation, and the resulting BOLD waveform and FC
topology can be used as an additional crtierion for discerning
between parameter candidates.

Another refinement strategy is based on the robustness of a
parameter set to explain (1) increasingly longer snippets and
(2) more snippets across different subjects. We assume that
the motif patterns constitute distinct activity profiles of neu-
ral population dynamics that appear highly conserved in
different subjects, but exhibit slight variations due to back-
ground activity. Therefore, the quality of a parameter set
can be quantified by its robustness in explaining a noisy
motif pattern across a large number of different subjects.
Thus, it is possible to assign the scores to parameter sets
that rank their robustness in predicting motif patterns across
different subjects. Equally fitting parameter sets can be ini-
tially stored in the dictionary and subsequently dismissed,
as the model is fitted to longer snippets and to new data
sets from different subjects.

Despite the existence of Kalman filter approaches for filter-
ing systems with multiple timescales, that is, slow–fast sys-
tems, and further, approaches that directly incorporate
inequality constraints, we prefer the proposed two-step
estimation–refinement procedure out of several reasons.
First, it constitutes a convenient way to add further con-
straints that are unknown at the time of the estimation, but
becomes available later a posteriori. Therefore, we store all
parameter settings that allow the reproduction of a certain
waveform in a dictionary and apply pruning of the results
upon availability of new physiological constraints. Second,
besides the fact that an additional BOLD model increases
the already-huge space of unknowns that need to be fitted
and thereby hardening the estimation process, we are uncer-
tain about the actual neurovascular coupling, and this uncer-
tainty might bias the estimator and introduce more
disadvantages than benefits when fitting the model to data.
Facing the lack of knowledge about the exact inter-relation-
ship between neuronal activity and hemodynamic signal
changes, our agenda is to use the least amount of assump-
tions about electrovascular coupling as possible and to stay
as flexible as possible to use this information only for refine-
ment of fittings of electrical activity. Third, the forward BOLD
model might change. Since we use a very simple BOLD
model at the present time and it is very likely that better spa-
tiotemporal BOLD models will appear in the near future, we
want to keep the flexibility to incorporate new models with-
out the necessity to repeat the estimation runs. Fourth, we
are actually interested in ambiguous solutions, since parame-
ter settings that allow the emergence of certain dynamics di-
rectly correspond to physiological ranges and conditions
under which a certain behavior is possible in the real system.
This allows an in silico study of physiological properties of the
neural populations that permit the emergence of certain activ-
ity patterns. This in turn enables us to formulate hypotheses
that can be verified in vitro or in vivo later on.

Benefits of TVB Platform

Predicting unobservable internal states and parameters:
model-based formulation of new hypotheses

By identifying parameter trajectories, we also identify
phase flows of unobservable system components; that is,
we build a computational microscope that allows the infer-
ence of internal states and processes of the system that lie
below the resolution of the imaging device. For example, it
is impossible to observe the neuronal source activity of the
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entire human brain simultaneously. If at all, we have patients
with implanted single electrodes or grids capturing a certain
region, so that only local field potentials or multiunit activity
can be assessed at one time. With our modeling approach, we
are able to predict the electric source activity that underlies
our observed EEG and fMRI signals throughout the brain si-
multaneously. An example of source activity in 96 regions of
the brain is shown in Figure 3A (right).

In a similar vein-fitting model, parameters to empirical
data lead to the prediction of certain biophysical properties
of the system units, given the observed functional imaging
data. For example, altering the coupling factors K11, K12,
and K21 between the inhibitory and excitatory neuronal pop-
ulation of the mesoscopic node modifies the properties of the
resulting source activity. This leads to the quantitative
hypotheses of the role of the balance between inhibitory
and excitatory local coupling testable by means of a pharma-
cological intervention using selective gamma-aminobutyric
acid or glutamate antagonists/agonists.

Another issue addressable by TVB is the relation between
electric neuronal activity and the BOLD signal. This is so im-
portant since fMRI is such a widely used brain-imaging tool.
However, the link between the BOLD signal and electrophys-
iological signals is far from being clear. In particular, the link
between fast oscillatory activity—a dominant feature of elec-
trophysiological data—and the BOLD signal is not resolved

(Riera and Sumiyoshi, 2010). While the strengths of those os-
cillations that are thought to reflect the degree of synchrony in
the underlying neuronal populations is correlated with the
BOLD signal (Moosmann et al., 2003; Ritter et al., 2008,
2009), the biophysical principles of this coupling are still un-
revealed. Yet, gaining more insight about this relation is es-
sential, since evidence attributes important functional roles
to neuronal oscillations and synchrony. Changes of these var-
iables are indicators for functionally relevant brain state alter-
ations (Becker et al., 2011; Freyer et al.; Reinacher et al., 2009).
TVB offers the possibility to explore both the interrelations of
different types of neuronal activity and the neurohemody-
namic coupling. The former is relevant to examine the neuro-
nal mechanisms underlying brain function such as the highly
debated question whether phase resetting of ongoing oscilla-
tions is a common principle in the brain (Ritter and Becker,
2009). The latter is relevant to clarify how oscillations, their
phase, and synchrony behavior relate to the BOLD signal.
The dictionary approach allows us to identify and store pa-
rameter sets that yield best model fits to multimodal empiri-
cal data. Such information can be collected for large numbers
of data sets. Post hoc statistics over the collected parameter
sets and corresponding goodness of fits allow us to identify
mechanistic scenarios that yield with high reliability our em-
pirical observations. The unobservable states predicted by
such identified models can then be used to formulate new

Table 2. Parameter Values of the Full-Brain Model Yielding the Exemplary Results Shown in Figure 3A
(Mean Field Source Activity), Figure 3B (Electroencephalography), Figure 3C (Blood Oxygen Level-Dependent

Activity), Figure 3D (Power Spectra of Mean Field Source, Electroencephalography, and Blood Oxygen

Level-Dependent Activity), Figure 2B (Blood Oxygen Level-Dependent Functional Connectivity),

and Figure 7 (Functional Connectivity of Mean Field Source Activity)

Parameter Value Comment

Large-scale connectivity
csf 0.0672 Capacities scaling factor (used to rescale DTI-derived capacities between brain regions)
v_cond 10 Conduction velocity (used to estimate time delays from DTI-derived distances

between brain regions)

Original Hindmarsh–Rose model parameters
r 0.006 Controls the speed of variation of the slow variables (i.e., z and u)
s 4 Adaptation variable
x0 �1.6 Membrane resting potential
a 1 Models behavior of fast ion channels
b 3 Models behavior of fast ion channels
c 1 Models behavior of fast ion channels
d 5 Models behavior of fast ion channels

Local population and local coupling parameters
K11 0.5 Connectivity strength within the excitatory subpopulations
K12 0.1 Connectivity strength from excitatory to inhibitory populations (default setting 0.15)
K21 0.15 Connectivity strength from inhibitory to excitatory subpopulations
mu 2.2 Mean of the distribution of membrane excitabilities for each subpopulation
sigma 0.3 Dispersion of membrane excitabilities for each subpopulation
Nv 1500 Resolution of excitatory distributions
Nu 1500 Resolution of inhibitory distributions

Noise for the six state equations
Qx 0.001 Mean of noise distribution for state variable x
Qy 0.001 Mean of noise distribution for state variable y
Qz 0.001 Mean of noise distribution for state variable z
Qw 0.001 Mean of noise distribution for state variable w
Qv 0.001 Mean of noise distribution for state variable v
Qu 0.001 Mean of noise distribution for state variable u

DTI, diffusion tensor imaging.
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hypotheses, for example, about underlying molecular mecha-
nisms that can be tested by means of appropriate methods
such as intracranial recordings, pharmacological interven-
tions, or in vitro research.

Revealing mechanisms that yield specific features
of large-scale dynamics

EEG waveforms recorded on the scalp are a linear superpo-
sition of microcurrent sources. However, the mechanisms of
source interaction from which dynamic signals emerge re-
main mostly unknown. In the past, it has been shown that
time delays of signal transmission between large-scale brain
regions that emerge from the specific underlying large-scale
connectivity structure due to finite transmission speeds can
have a profound impact on the dynamic properties of the
system (Ghosh et al., 2008; Knock et al., 2009). Ghosh and col-
leagues demonstrate that in large-scale models, besides real-
istic long-range connectivity, the addition of noise and time
delays enables the emergence of fast neuroelectric rhythms
in the 1–100-Hz range and slow hemodynamic oscillations
in the ultraslow regimes < 0.1 Hz (Ghosh et al., 2008). These
two studies demonstrate how large-scale modeling helps to
reveal mechanisms that based on empirical data alone
would not have been recovered. The same large-scale model-
ing approaches that have been employed in both studies now
build important foundations of TVB.

TVB accounts for individual differences in SC. Hence, it
can be used to investigate the effects of variation in coupling
(time delays and connection strengths) on emerging brain dy-

namics by comparing predictions and real data across differ-
ent subjects. Figure 2C illustrates how TVB can reveal
individual structure–function relations. SC in terms of fiber-
tract sizes and length was determined for a single subject
(No. 7). A Stefanescu–Jirsa full-brain model was constructed
based on the features of the SC of this subject. Simulations
were run for 80 different parameter settings. The resulting
96 · 96 simulated BOLD FC matrices were compared with
the empirical BOLD FC matrices of this subject and of eight
others. The distribution of correlation coefficients between
the simulated (based on the connectivity of subject No. 7)
and the empirical (of all nine subjects) FC for a single tested
parameter setting (Table 2) is displayed in Figure 2C. Each
subplot represents the distribution of correlation coefficients
obtained for the empirical FCs of an individual subject. In
this example, model predictions match far better the empiri-
cal data of subject No. 7, that is, the subject whose SC was
used. A systematic evaluation of these results will be pub-
lished elsewhere. This example illustrates that TVB enables
us to assess the individual structure–function relationship
of the brain. Statistical evaluations over a larger number of
subjects will provide us with insights regarding which struc-
tural parameters give rise to which features of the space–time
structure of brain activity, and hence helps us understanding
interindividual differences.

The role of several features concerning the relation be-
tween structure and dynamics as well as the relation between
source activity and the signals observed with brain imaging
devices can be addressed by TVB. To mention just a few,
the role of time delays, directionality of information flow,

FIG. 7. Simulated FC of individual frequency bands of mean-field activity and its correlation with the empirical BOLD FC are
shown in Figure 2B. Area names of the 96 regions are listed in Table 1—ordering of regions is equal in table and matrices.
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or synchrony in certain frequency bands or between regions
can be systematically investigated by TVB. As an illustration
we show in Figure 7, how different frequency bands of elec-
tric source activity do reflect the functional BOLD connectiv-
ity observed in empirical data.

Following the reconstruction of model dynamics from em-
pirical timeseries, several neurobiological questions can be
addressed. State and parameter space trajectories can be re-
lated to experimental conditions and behavior. Therefore,
the proposed approach allows for the direct association of
low-level neuronal processes with the top-level cognitive pro-
cesses. It identifies metrics that quantify the functional rele-
vance of dynamical features for cognition and behavior
under normal and pathological conditions. Ultimately, we be-
lieve that this tool enables us to gain further insights into the
mechanisms and principles of neural computation.

Conclusions

In this article, we have shown the development of a com-
putational platform called TVB that aims to model large-
scale brain dynamics as accessible by brain-imaging meth-
ods such as EEG and fMRI. We chose the Stefanescu–Jirsa
model for the simulation of local dynamics at 96 cortical
regions. These regions or nodes were connected to form a
network. Time delays and interaction strength between
the nodes were based on real tractography data of individ-
ual subjects.

This is the first open-source computational platform that
provides a complete and customizable toolbox to model
large-scale brain phenomena of individual subjects. It enables
identification of mechanisms underlying the space–time struc-
ture of the brain and the generation of new hypotheses not pos-
sible experimentally. Thereby, it integrates theory-driven and
data-driven research approaches into a single framework.

While we have provided here a proof of concept for the
functioning of TVB, TVB is a community project. Only the
contributions of many sites will lead to a major breakthrough
in our understanding of the brain. It is the systematic and
standardized exploration of model dynamics on multiple
spatiotemporal scales and the organized storage of new
knowledge in the TVB dictionary that finally will give us an
understanding of the principles that underlie the complex
space–time structure of our brain.
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